II B. Tech I Semester Supplementary Examinations, May/June - 2016 PROBABILITY AND STATISTICS

(Civil Engineering)
Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B
4. Statistical tables are required

PART - A

1. a) Find the mean value of the of the random variable whose probability density function is given by $f(x, y)=\frac{3}{5} 10^{-5} x(100-x), 0 \leq x \leq 100$
b) Find the probability of getting a total of 5 at least once in three tosses of pair of fair dice?
c) What is the probability that the average \bar{X} will be between 75 and 78 if a random sample of size 100 taken from an infinite population has mean 76 and variance 256
d) Write a sort note on types-I and type-II errors
e) Prove that the arithmetic mean of the regression coefficient in greater than the correlation co-efficient
f) Explain in brief mean chart

PART - B

2. a) Ten coins are tossed simultaneously, Find the probability of getting at least 7 heads.
b) If a random Variable has a passion distribution such that $P(1)=P(2)$, find $P(4)$
3. a) Suppose 2% of the people on the average are left handed. Find
i) the probability of finding 3 or more left handed
ii) the probability of finding ≤ 1 left handed
b) Suppose the heights of American men are normally distributed with mean $=68$ inches and standard deviation 2.5 inches. Find the percentage of people whose heights lie between i) 68 inches and 71 inches ii) at least 6 ft .
4. a) If $x_{1}, x_{2}, \ldots . x_{n}$ are random observations on a Bernoulli variable X taking the value 1 with probability θ and the value 0 with probability $(1-\theta)$, show that $\frac{\tau(\tau-1)}{n(n-1)}$ is an unbiased estimate of θ^{2} where $\tau=\sum_{i=1}^{n} x_{i}$
b) If $x_{1}, x_{2}, \ldots . x_{n}$ is a random sample from a normal population $N(\mu, 1)$ show that $t=\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }^{2}$ is an unbiased estimator of $\mu^{2}+1$
5. a) 400 articles from a factory are examined and 3% are found to be defective. Construct 95\% confidence interval.
b) A die is thrown 256 times and even digit turns up 150 times. Can we say that the die is unbiased?
6. a) Let the random variable X has the marginal density function $g(x)=1, \frac{-1}{2}<$ $x<\frac{1}{2}$ and let the conditional density of Y be $h\left(\frac{y}{x}\right)=1, x<y<x+1$ $\frac{-1}{2}<x<0=1, \quad-x<y<1-x, 0<x<\frac{1}{2}$

Show that the variables X and Y are uncorrelated
b) If the random variable X is uniformly distributed in $(0,1)$ and $Y=X^{2}$, find
i) $v=(y)$
ii) $r_{x y}$
7. A textile company wishes to implement a quality control programme on a certain garment with respect to the number of defects found in the final production. A garment was sampled on 33 consecutive hours of production. The number of defects found per garment is given hereunder
Defects: 5,1,7,1,0,2,3,4,0,3,2,4,3,4,4,1,4,2,1,3,4,3,11,3,7,8,5,6,1,2,4,7,3.
Compute the upper and lower 3 -sigma control limits for monitoring the number of defects.

